
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP/2014-005
2014/02/10

CMS-SMP-13-004

Measurement of the production cross sections for a Z boson
and one or more b jets in pp collisions at

√
s = 7 TeV

The CMS Collaboration∗

Abstract

The production of a Z boson, decaying into two leptons and produced in association
with one or more b jets, is studied using proton-proton collisions delivered by the
LHC at a centre-of-mass energy of 7 TeV. The data were recorded in 2011 with the
CMS detector and correspond to an integrated luminosity of 5 fb−1. The Z(``)+b-jets
cross sections (where `` = µµ or ee) are measured for a Z boson produced with ex-
actly one or at least two b jets. In addition, a cross section ratio is extracted for a Z
boson produced with at least one b jet relative to a Z boson produced with at least
one jet. The measured cross sections are compared to various theoretical predictions,
and the data favour the predictions in the five-flavour scheme, where b quarks are
assumed massless. The kinematic properties of the reconstructed particles are com-
pared with the predictions from the MADGRAPH event generator using the PYTHIA

parton shower simulation.
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1 Introduction
Z bosons and jets originating from bottom quarks (b jets) are produced copiously in proton-
proton collisions at the Large Hadron Collider (LHC). The production of a Z boson with at
least one b jet in the detector acceptance, Z+b-jets production, is useful for precision tests of
perturbative QCD [1–3]. The production of a Z boson with a single b jet, Z+1b-jet production,
provides information relating to the b-quark content of the proton. The study of the production
of a Z boson in association with at least two b jets, Z+2b-jets production, is of interest since it is
a background in many searches for yet unobserved processes, such as the production of heav-
ier supersymmetry-like Higgs bosons via vector boson fusion, and in studies of the standard
model Higgs boson produced in association with a Z boson and decaying to b quarks [4, 5].

The production of a Z boson with b jets originates in proton-proton collisions from gluon-
gluon and quark-antiquark interactions, the former being the dominant contribution [3]. A
smaller contribution, expected to be less than 5% [6], originates from multiple parton inter-
actions (MPIs). The production cross section for a Z boson with at least one b jet has been
measured previously at the LHC at

√
s = 7 TeV by the ATLAS [7] and CMS [8] Collaborations

and by the CDF [9] and D0 [10] Collaborations at the Tevatron pp collider, at
√

s = 1.96 TeV,
where the dominant contribution comes from quark-antiquark interactions. The characteristics
of the production of a Z boson in association with b hadrons have been studied at the LHC by
the CMS Collaboration [11].

In this paper, measurements are reported of the cross sections at
√

s = 7 TeV for the produc-
tion of a Z boson with exactly one or at least two b jets. Two event categories are defined
according to the b-jet multiplicity, and the yields are corrected for the respective backgrounds
and efficiencies, taking into account possible migrations of events between the two categories.
The cross sections are estimated at the level of stable final-state particles and are compared with
predictions from MADGRAPH [12] in the five-flavour (5F) scheme, where b quarks are assumed
massless, and the four-flavour (4F) scheme, where massive b quarks are used, as well as with
the next-to-leading-order (NLO) predictions from aMC@NLO [13]. The inclusive Z+b-jets cross
section is compared to the production of a Z boson in association with jets of any type. The
resulting ratio has smaller theoretical and experimental uncertainties than the absolute cross
section [14] and is used to elucidate the apparent difference between the measured Z+b-jets
cross section [8] and the prediction at the parton level from the MCFM NLO generator [2].

In addition, the distributions of reconstructed kinematic observables for jets and leptons in the
Z+2b-jets final state are compared to a Monte Carlo (MC) simulation using the matrix element
calculations of MADGRAPH in the five-flavour scheme and using PYTHIA [15] for the simulation
of the parton shower and hadronization processes. Understanding the details of the kinematics
is important in the search for undiscovered particles as well as for the study of the newly
discovered Higgs boson [16–18] in similar topologies.

2 CMS detector and event samples
The data used in this analysis were collected with the Compact Muon Solenoid (CMS) detector.
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter that provides a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip
tracker, a crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calori-
meter. Muons are detected in gas-ionisation detectors embedded in the steel flux return yoke
of the magnet. A more detailed description of the CMS detector can be found elsewhere [19].
A right-handed coordinate system is used in CMS, with the origin at the nominal interaction
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point, the x axis pointing to the centre of the LHC ring and the y axis pointing up, perpendicu-
lar to the plane of the LHC ring. The polar angle θ is measured from the positive z axis, which
points along the anticlockwise beam direction, and the azimuthal angle φ is measured in the
x-y plane. The pseudorapidity is given by η = − ln[tan(θ/2)].

The data were collected in 2011 at a proton-proton centre-of-mass energy of 7 TeV and cor-
respond to an integrated luminosity of L = 5.05± 0.11 fb−1 [20]. During the course of data
taking, the instantaneous luminosity increased from 1032 to 3.5× 1033 cm−2 s−1, resulting in an
average number of proton-proton interactions per bunch crossing (pileup) of 9.7 with an RMS
of 4.7.

Events are selected using dimuon and dielectron triggers. The dimuon trigger pT thresholds
were increased from 7 GeV on both muons to 13 and 8 GeV on the leading and subleading
muons, respectively, as the instantaneous luminosity increased during the data taking pe-
riod [21]. The dielectron trigger has transverse momentum (pT) thresholds of 17 and 8 GeV,
loose identification criteria, and very loose isolation requirements [22].

In order to compare the data to the theoretical expectations, signal events and the expected
backgrounds (Z+jets, tt, and ZZ) are generated by MC simulation and simulated within the
CMS detector using GEANT4 [23]. Inclusive Z+jets and tt events are simulated with MAD-
GRAPH 5.1.1.0, using PYTHIA 6.424 with the Z2 tune [24, 25] for the parton showers, hadron-
ization, and MPIs. The CTEQ6L1 parton distribution functions (PDFs) [26] are used. The ZZ
sample is simulated using PYTHIA. The Z+jets sample is also used to extract the signal efficien-
cies and for the comparison of kinematic distributions.

The simulated samples used for comparison with data are normalized to the cross sections
expected from theory in the full acceptance. The cross section for the Z+jets sample, 3048 pb,
is normalized to match the next-to-NLO prediction for inclusive Z production obtained with
FEWZ [27] and the CTEQ6m PDFs [26]. NLO predictions obtained from MCFM are used for the
normalization of the tt sample, 157.5 pb, and the ZZ sample, 6.2 pb [28]. The simulated Z+jets
sample is split into three subsamples, according to the underlying production of b jets, c jets,
or jets originating only from gluons or u,d,s quarks (hereafter called light-parton jets), with
no requirement on the pT or η of the jets. These subsamples are labelled Z+b, Z+c, and Z+l,
respectively.

3 Event reconstruction and selection
The reconstruction and selection of events with a Z boson that decays into a pair of muons
or electrons, and one or more b jets are based on the criteria used in the measurement of the
inclusive Z+b-jets cross section at CMS [8]. For the identification of muons, jets, and missing
transverse energy, the CMS particle-flow event reconstruction is used. This algorithm com-
bines the information from all subdetectors to identify and reconstruct the individual particles
produced in the collision [29, 30].

The leptons in the analysis are required to originate from the primary vertex, which is cho-
sen as the vertex with the largest quadratic sum of the pT of its constituent tracks. Muons
are reconstructed by combining the information from both the silicon tracker and the muon
spectrometer in a global fit. Tight requirements, including particle-flow identification, are ap-
plied to the muon candidates to ensure high purity [21]. Electrons are identified by combining
tracker tracks and ECAL clusters, including the ECAL deposits from bremsstrahlung [22]. An
isolation variable, which is defined as the sum of the magnitudes of the transverse momenta of
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the particles reconstructed in a cone around the lepton candidate, ∆R =
√
(∆η)2 + (∆φ)2 < 0.4

(0.3), relative to the transverse momentum of the lepton, is used to reject muons (electrons)
that are embedded in jets. Charged particles not associated with the primary vertex are not
considered in forming the isolation variable. To reduce the effect from pileup, the contribution
of neutral particles is corrected by subtracting the energy deposited in the isolation cone by
charged particles not associated with the primary vertex, multiplied by a factor of 0.5. This
factor corresponds approximately to the ratio of neutral to charged hadron production in the
hadronization process of pileup interactions [21, 22]. After this correction, the isolation variable
is required to be less than 20% for muons and 15% for electrons.

Both leptons are required to have p`T > 20 GeV and pseudorapidity |η`| < 2.4. Opposite
charges for the leptons are required when forming pairs. In the case of multiple lepton combi-
nations, the lepton pair with the invariant mass closest to the nominal Z-boson mass is selected
as the Z candidate. The efficiency of the dilepton selection is estimated using the tag-and-
probe method [31] in events with at least two leptons and a jet passing the requirements de-
tailed below. The offline selection efficiencies are estimated from data and simulations, and
data/simulation ‘scale factors’ are estimated to correct for the differences; trigger efficiencies
are estimated from data alone. All simulated events are corrected for differences between data
and simulation by applying the trigger efficiencies and the data/simulation scale factors as a
function of pT and η for each lepton.

Jets are reconstructed by clustering individual particle-flow objects using the anti-kT jet clus-
tering algorithm [32] with a distance parameter of 0.5, as implemented in the FASTJET pro-
gram [33, 34]. Jets are calibrated using photon+jet, Z+jet, and dijet events to ensure a uniform
energy response in pT and η [35]. The contribution to the jet transverse energy from pileup is
estimated on an event-by-event basis using the jet-area method [36] and is subtracted. The re-
constructed jets are required to have pj

T > 25 GeV and to be separated from each of the selected
leptons by at least ∆R(`, j) = 0.5. Furthermore, jets are required to have |η j| < 2.1 to ensure
optimal b-tagging performance. Loose identification criteria [35] are applied in order to reject
jets coming from beam background, calorimeter noise, and isolated photons. Jets originating
from pileup in the Z+jets sample, and thereby contributing falsely to the cross section ratio,
are suppressed by requiring the momentum of particle tracks originating from the selected pri-
mary vertex compared to the jet momentum be at least 10%. The remaining background caused
by jets from pileup is ∼2% in the Z+jets data sample.

Jets originating from b quarks are tagged by taking advantage of the long b-hadron lifetime.
The ‘Simple Secondary Vertex’ (SSV) b-tagging algorithm employs a three-dimensional flight
distance significance between the primary vertex and a secondary vertex in a jet. To maximise
the selection efficiency of the Z+b-jets process for multiple b jets, the high-efficiency version of
the SSV b-tagging algorithm is used, which considers secondary vertices built from two or more
tracks. The discriminant value to define b-tagged jets is chosen such that the probability of
tagging a light-parton jet (mistagging fraction) is less than 1%, with a b-tag efficiency of ∼55%.
The b-tagging efficiencies and mistagging fractions are measured in the data and simulation
as functions of the pT and η of the jet using inclusive jet samples, where the tagging efficiency
in the data is ∼5% smaller than the efficiency in the simulations [37]. Simulated events are
corrected for this difference, taking into account the data/simulation scale factor for each b-
tagged jet, depending on the generator-level flavour.

After the application of the b-tagging requirement, the sample is divided into nonoverlapping
categories according to the number of b-tagged jets in the sample: the Z+1b-jet sample contains
events with exactly one b-tagged jet, while the Z+2b-jets sample contains the events with at
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Figure 1: Distribution of the invariant mass
of the electron pair in a sample of events con-
taining two electrons and two b-tagged jets
and requiring Emiss

T significance < 10. Over-
laid are the distributions after a fit of the tt
fraction within the wide dilepton invariant-
mass window: 61 < M`` < 121 GeV.
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Figure 2: Distribution of the Emiss
T significance

variable in a sample of events containing two
leptons and two b-tagged jets and within the
default mass window, 76 < M`` < 106 GeV.
The simulated distributions are normalized
using the theoretical predictions. The last bin
contains the overflow.

least two b-tagged jets. In order to suppress background from tt production in both samples,
the reconstructed dilepton invariant mass M`` is required to have a value between 76 and
106 GeV. In Fig. 1 the dielectron invariant mass distribution shows the effectiveness of this
requirement.

To further suppress the tt background in the Z+2b-jets sample, the missing transverse energy
(Emiss

T ) is evaluated and events with a value significantly different from zero are vetoed. The
Emiss

T is calculated by forming the negative vector sum of the transverse momenta of all particles
in the events. The Emiss

T significance is more robust than the Emiss
T itself against pileup, and offers

an event-by-event assessment of the likelihood that the observed Emiss
T is consistent with zero

given the reconstructed content of the event and known measurement resolutions of the CMS
detector [38]. In Fig. 2 the Emiss

T significance distribution is shown after requiring a Z candidate
and two b-tagged jets. The distributions for the Z+b and tt components motivate the selection
of events with a reconstructed Emiss

T significance less than 10, which results in a high signal
efficiency and small systematic uncertainty.

All simulated events are corrected for the differences between data and simulation in the pileup
distributions, b-tagging efficiencies, and lepton reconstruction efficiencies. The data yields as
well as the predicted yields are summarised in Table 1.

4 Backgrounds
Events not originating from the Z+b-jets production process, but nevertheless contributing to
the final reconstructed event yield after the full selection, are expected to originate from tt,
Z+jets, and ZZ production. For the Z+1b-jet sample, the main background originates from
Z bosons produced in association with non-b jets; for the Z+2b-jets sample, another sizable
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Table 1: Data yields in the selected samples and a comparison to the expectation from various
sources based on MC simulations. The expected yields are estimated using the theoretical
predictions for the cross sections. Uncertainties are statistical only.

Selection Data Total simulation Z+b Z+c Z+l tt ZZ
Z(µµ)+1b-jet 13 090 12 904± 77 6810± 58 3647± 41 1829± 29 549± 3 69± 1
Z(µµ)+2b-jets 522 480± 13 350± 12 34± 4 5± 1 80± 1 11± 1
Z(ee)+1b-jet 9672 9924± 67 5218± 50 2844± 36 1364± 25 445± 3 53± 1
Z(ee)+2b-jets 362 357± 11 258± 10 27± 3 2± 1 62± 1 8± 1

background originates from tt production, with another nonnegligible contribution from ZZ
production.

The background originating from tt production is estimated by means of a binned fit to the wide
dilepton invariant-mass spectrum, 61 < M`` < 121 GeV, as shown for the electron channel in
Fig. 1. The shape of the invariant-mass distribution for Z+jets events is taken from Z-boson-
enriched data samples, while the distribution (template) for tt is based on simulation.

As a control method, two other distinct parameterizations are employed for the probability
density functions of the Z+jets and tt contributions: (i) Z+jets templates based on simulation
together with tt templates based on distributions in data samples, and (ii) an empirical param-
eterization. These tt templates are acquired from an opposite-flavour (µ/e) dilepton sample
in which the tt contribution is enriched. The empirical parameterizations employ a relativistic
Breit–Wigner distribution to describe the Z+jets contribution and a polynomial distribution to
describe the tt contribution; the parameters of both probability density functions are free to
vary in the fit. As another control method, a multivariate matrix-element approach [39] is used
to distinguish signal and background.

In all channels the results obtained with the various parameterizations and methods are consis-
tent with each other and with the expectations from simulation. The fraction of events from tt,
ftt, estimated from the fit within the wide mass window is interpolated to the signal mass win-
dow (76 < M`` < 106 GeV). The differences between the tt estimates derived from alternative
parameterizations are used to estimate the related systematic uncertainty.

The background due to mistagged c and light-parton jets is estimated from the mass distri-
bution of the secondary vertices (MSV) of the b-tagged jets. For the Z+1b-jets sample, exactly
one jet per event is b-tagged, and hence one secondary vertex per event is reconstructed and
analyzed. For the Z+2b-jets sample the distributions of the MSV of both the leading (in pT) and
subleading b-tagged jets are used.

As described in detail in [8], templates are obtained from simulations to model the MSV dis-
tributions for the various jet flavours; separate templates are constructed for b jets, c jets, and
light-parton jets. These templates are used in maximum-likelihood fits to extract the fractions of
b, c, and light-parton jets from the data for both the Z+1b-jet and the Z+2b-jets samples. In the
Z+2b-jets sample the distributions of the leading and subleading jets are fitted separately. The
results of fits to the one-dimensional MSV distributions after the Z+2b-jets selection are shown
in Fig. 3. The fractions of correctly tagged b jets in the Z+1b-jet and Z+2b-jets samples are esti-
mated to be ∼55% and 80–85%, respectively. The estimated fraction of correctly tagged b jets is
checked by comparing the fit results to (i) the results obtained with templates constructed from
an independent MC sample, and (ii) the direct expectations from simulation, and are found to
be in agreement. Effects due to gluon splitting in the modelling of the distributions have been
studied and found to be negligible.
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Figure 3: Distributions of the secondary vertex mass of the leading (in pT) b-tagged jet of
the dimuon Z+2b-jets sample (left) and the subleading b-tagged jet of the dielectron Z+2b-jets
sample (right). The overlaid distributions are the results of the fit described in the text.

Subsequently, the fractions of correctly tagged b jets are transformed into the purities PZ+1b
b and

PZ+2b
b , i.e. the fractions of events in the two samples that contain correctly tagged b jets; events

in the Z+2b-jets sample with two correctly tagged b jets are considered as Z+2b-jets signal
events, whereas events with one mistagged jet in the Z+2b-jets sample are considered for the
Z+1b-jet signal yield. In order to estimate these ratios from the results of the one-dimensional
fits, the various combinations in which two jets are b-tagged in the Z+2b-jets sample are studied
in simulations. The systematic uncertainty related to the b purity is evaluated by varying the
mistagging rates and production rates within their uncertainties. As a cross-check, a fit is per-
formed to the two-dimensional distribution of the MSV values for the leading and subleading
b-tagged jets, and consistent results are obtained.

A small background from ZZ events is expected in the Z+2b-jets sample. This contribution
(NZZ) is estimated from MC simulations, using the cross section and uncertainty from the
CMS measurement [40] for the normalization. The yield from a SM Higgs boson with mass of
125 GeV [17, 18, 41] that decays into two b jets, and is produced in association with a Z boson,
is expected to be approximately 20% of the ZZ contribution, i.e. 2.1 events in the Z(µµ)+2b-jets
final state and 1.7 events in Z(ee)+2b-jets final state. The resulting effect on the Z+2b-jets cross
section is expected to be ∼0.6%.

Table 2: The estimates of the purities, the tt fractions, and the ZZ backgrounds for the various
b-jet multiplicities and lepton flavours, including statistical and systematic uncertainties.

Selection PZ+1b
b f Z+1b

tt NZ+1b
ZZ

Z(µµ)+1b-jet (53.7± 1.1)% (5.2± 0.7)% 73± 24
Z(ee)+1b-jet (55.0± 1.3)% (5.0± 0.7)% 56± 19

PZ+2b
b f Z+2b

tt NZ+2b
ZZ

Z(µµ)+2b-jets (75.1± 6.4)% (13.0± 1.9)% 12± 4
Z(ee)+2b-jets (74.1± 7.3)% (14.0± 2.3)% 8± 3
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The background contributions are summarized in Table 2. The backgrounds due to tt and ZZ
production increase when requiring two b-tagged jets, because of the relatively harder spectra
of these sources of background compared to the signal. At the same time, the backgrounds
due to light-parton jets decrease, since the probability of mistagging two jets is smaller. The
corrected signal yield (Nsig) is obtained by subtracting the backgrounds from the number of
selected events (Nrec), and is estimated as

NZ+1b
sig = NZ+1b

rec × (PZ+1b
b − f Z+1b

tt )− NZ+1b
ZZ + f Z+2b

1b × NZ+2b
rec ,

NZ+2b
sig = NZ+2b

rec × (PZ+2b
b − f Z+2b

tt )− NZ+2b
ZZ .

(1)

Here, f Z+2b
1b is the fraction of events in the Z+2b-jets sample for which one jet is mistagged,

which is 16± 5%. The resulting contribution to the Z+1b-jet cross section is ∼1%.

5 Efficiencies and migrations
In order to extract a cross section at the particle level, the background-subtracted yields for the
Z+1b-jet and the Z+2b-jets categories in Eq. (1) are corrected for the efficiencies in the selection
of the dilepton pair and the b-tagged jets, as well as for the detector resolution effects. Both the
application of b tagging and jet reconstruction may induce migrations between the category of
events containing one b jet and that containing more than one, since the number of generated
b jets and the number of correctly reconstructed b jets are, in general, not the same. In order
to estimate the cross sections for the different b-jet multiplicities, the efficiency corrections (or
‘unfolding’) are performed as a function of the number of b jets.

Particle-level b jets are defined by matching generated jets to a b hadron within ∆R < 0.5 of the
jet axis. No requirement is placed on the pT of the hadron, and the generated jet is constructed
from particle-level objects which include invisible particles. The generated jets are clustered
and selected with the same criteria used for the jets reconstructed in data. Particle-level leptons
are defined as ‘dressed’ leptons, i.e. adding to the lepton all generator-level photons within a
cone of ∆R < 0.1.

The selection efficiency is factorised into two parts: the b-tagging efficiency (Eb) and the lepton
selection efficiency (E`). The correction for the detector resolution effects (Er) is dominated by
the jet energy resolution. Finally, Em corrects for the efficiency loss associated with the selection
criterion on the Emiss

T significance in the Z+2b-jets event selection.

To account for migrations between different b-jet multiplicities, a 2× 2 matrix equation is used.
Each efficiency factor is represented by a matrix (the matrices E` and Em are diagonal). The
matrices are applied in an order reflecting the order of the selection requirements.σZ+1b

σZ+2b

 =
1
L × E

−1
r × E−1

` × E
−1
b × E

−1
m ×

NZ+1b
sig

NZ+2b
sig

 . (2)

This equation is used to obtain the cross sections for the production of a Z boson in association
with exactly one b jet (σZ+1b) or at least two b jets (σZ+2b) from the numbers of reconstructed
signal events in the Z+1b-jet and Z+2b-jets categories.

The MC signal sample is used to build the matrices, with efficiencies from the simulation
rescaled to match the efficiencies observed in the data. The pT distributions for the leading
(in pT) and subleading b jets after the Z+2b-jets selection are shown in Fig. 4. The agreement
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between data and simulations in Figs. 2 and 4 justifies the use of this sample for the unfolding
procedure.
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Figure 4: The combined muon+electron distributions of the pT of the leading-pT (left) and
subleading-pT (right) b-tagged jet for the Z+2b-jets sample. The simulated samples are normal-
ized to the theoretical predictions. The last bin in both distributions contains the overflow, and
the uncertainties in the simulations are shown as a hatched band. The data/simulation ratio
shows the separate contributions to this uncertainty: the band represents the statistical uncer-
tainty in the simulated yield, and the lines indicate the uncertainties related to the jet energy
scale (dashed) and the b-tag scale factors (solid).

The inclusive cross section for the production of a Z boson in association with at least one b
jet is the sum of the two cross sections in Eq. (2), namely, σZ+b ≡ σZ+1b + σZ+2b. The ratio of
this cross section to the cross section for the production of a Z boson with any kind of jet is
denoted σZ+b/Z+j. The cross sections are defined using the same acceptance for the different
lepton flavours: events have leptons with p`T > 20 GeV and |η`| < 2.4, a dilepton invariant
mass 76 < M`` < 106 GeV, and jets with pj

T > 25 GeV and |η j| < 2.1, and a separation between
the leptons and the jets of ∆R(`, j) > 0.5.

The terms in Eq. (2) related to the b-tagging and Emiss
T efficiencies are found to be very similar

for the muon and the electron channels, as expected. For the lepton selection efficiencies, results
are found to be almost identical between the two b-jet multiplicity bins, which is expected since
the requirement of ∆R(`, j) > 0.5 effectively renders the lepton selection insensitive to the jet
multiplicity.

6 Systematic uncertainties
The following sources of systematic uncertainties are considered:

• Background from light-parton jets: For the estimate of the background due to mistagged
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b jets, the main source of uncertainty arises from the fit uncertainty in the fraction of
b jets in the Z+1b-jet and Z+2b-jets samples. The other source of uncertainty orig-
inates from the ambiguity when estimating the number of events containing zero,
one, or two b jets in the Z+2b-jets sample. The corresponding systematic uncertainty
is estimated by varying the (mis)tagging efficiencies according to their uncertainties.

• Background from tt: The main source of uncertainty in the estimate of the tt back-
ground is the statistical uncertainty from the fit. An additional uncertainty orig-
inates from the modelling of the signal and background shapes. The probability
density functions used in the estimate of the tt background are obtained in three
distinct ways: with templates based on simulation and on data, and by modelling
the contributions with an empirical parameterization. The systematic uncertainty is
estimated from the differences between the three methods.

• The ZZ background: The uncertainty in the overall normalization is taken from the
CMS measurement [40]. Correlated sources of uncertainties (such as the luminosity)
are ignored to avoid double counting.

All background-related systematic uncertainties are listed in Table 2, and are propagated to the
cross section estimate following Eq. (1). Other systematic uncertainties, estimated via Eq. (2),
are:

• The b-tagging efficiency and the mistagging fraction: These uncertainties affect the
b-tagging efficiencies as described in Section 5. The pT-dependent uncertainties in
the jet tagging efficiency, 3–8% for pT > 30 GeV and 12% for pT < 30 GeV, are
propagated to the b-tagging data/simulation scale factors, as described in Ref. [37].
The uncertainty in the mistagging fraction, which enters the calculation of the event
weight at second order, is found to have a negligible impact.

• Jet energy scale (JES) and resolution (JER): The uncertainty in the JES is taken from
Ref. [35] and amounts to 3–5% depending on the pT and η of the jets. The uncertainty
in the JER is taken to be 10%, after degrading the simulated resolution by 10% to
match that measured in the data. Both affect Er.

• Effect from pileup: The total inelastic cross section used to infer the pileup in data
from the instantaneous luminosity is varied by ±5%, thereby affecting the pileup
distribution in the simulated samples and covering the uncertainties due to pileup
modelling. It is then propagated to the estimation of the unfolding matrices where
it affects mainly the lepton efficiency factors through the lepton isolation require-
ments.

• Requirement on Emiss
T : The requirement on the Emiss

T significance removes∼2% of the
Z+2b-jets signal contribution, which is evaluated from simulation. The systematic
uncertainty is estimated by varying each component entering the Emiss

T calculation
within its uncertainty. This includes contributions from JES and JER as discussed
above, unclustered energy (10%), τ leptons (3%), electrons and photons (0.6–1.5%),
and muons (0.2%) [38].

• MC statistics: While the MC statistics suffice for the Z+1b-jet sample, they lead to
uncertainties of several percent in correction factors involving the Z+2b-jets sample.

• Luminosity: The uncertainty of the integrated luminosity recorded by CMS is 2.2%
in the 2011 data set [20].

• Dilepton selection efficiencies: The systematic uncertainty of the scale factor per lep-
ton, which is applied to simulated events to compensate for data/simulation differ-
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ences, is obtained with the tag-and-probe method, and is less than 0.4% for muons
and 1.0% for electrons.

• Theory: The effect of uncertainties in the renormalization and factorization scales is
estimated using MCFM [2]. The impact of scale variations on the pT of the b jets is
used in the unfolding procedure to estimate the effect on the cross section. Similarly,
the pT of the dilepton pair is varied according to the difference observed between
data and simulation to estimate the impact on the unfolding. Together, this leads to
an uncertainty of at most 3% in the cross sections.

• Vertex association: For the estimate of the cross section ratio σZ+b/Z+j, an additional
uncertainty arises from the contribution of jets not associated with the primary ver-
tex. After the requirement on the momentum fraction of tracks originating from the
primary vertex, the background due to pileup is estimated from simulation to be
2.2%. The efficiency of the requirement is estimated from the distribution of this
observable in data before applying the requirement. The corresponding systematic
uncertainty is evaluated by comparing the distributions of this observable in data
and simulation; it is assumed that the difference observed for the variable used for
the vertex association is entirely due to events originating from pileup. This as-
sumption results in a systematic uncertainty of 18% in the pileup contamination,
fully correlated between the electron and muon channels.

Table 3: Fractional uncertainties in the measured cross sections, grouped according to the
correlation between the channels.

µµ (%) ee (%)
Z+1b Z+2b Z+1b Z+2b

Uncorrelated
b purity 3.0 12.7 3.3 15.1
tt 1.7 3.8 1.7 4.8
Dilepton selection 1.0 1.0 2.0 2.0
MC statistics 0.9 4.2 1.2 5.1
Correlated
b-tagging efficiency 3.6 9.0 3.6 9.0
Jet energy scale 2.0 3.6 2.0 3.6
Theory 1.8 3.0 1.8 3.0
Luminosity 2.2 2.2 2.2 2.2
ZZ 0.4 1.2 0.5 1.4
Jet energy resolution 0.6 0.7 0.6 0.7
Pileup 0.3 0.3 0.3 0.3
Mistag 0.0 0.1 0.0 0.1
Total stat. uncertainty 0.9 4.5 1.0 5.4
Total syst. uncertainty 6.3 17.4 6.7 19.8

The systematic uncertainties are summarized in Table 3. The uncertainties are presented sepa-
rately for the muon and electron channels, and for the Z+1b-jet and Z+2b-jets measurements.

7 Kinematic observables
One of the observables of interest for searches in the Z+2b-jets final state is the invariant mass
of the b-jet pair (Mbb). This observable is, for example, used in the study of the Higgs boson
produced in association with a Z boson and decaying into two b jets, in the Z(``)H(bb) final
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state [4, 5]. Other kinematic observables in the Z+2b-jets final state relevant to searches for
undiscovered processes are the transverse momentum of the dilepton (pZ

T) and the dijet (pbb
T )

pair, and the angle between the dilepton pair and the dijet pair (∆φZ,bb). The distributions of
these observables are compared with the predictions from MADGRAPH, including uncertain-
ties due to the jet energy scale and the b-tagging efficiencies, as well as the uncertainties due to
limited MC statistics. More than two jets are b-tagged in less than 2% of the Z+2b-jets events,
and in this case the two highest-pT jets are considered.

The distributions of Mbb and pbb
T , presented in Fig. 5 (top left and top right, respectively), show

agreement with the predictions. The distribution of ∆φZ,bb, shown in Fig. 5 (bottom left), shows
agreement with the predictions as well, both in the collinear and back-to-back regions. This is
especially relevant with respect to contributions from MPIs, which are expected to have less
correlated kinematics than those from the Z+2b-jets process, and will therefore give a uniform
distribution in ∆φZ,bb.

On the other hand, the pZ
T distribution shows a harder spectrum in data than predicted, as

shown in Fig. 5 (right bottom). An overall excess of events is observed for pZ
T > 80 GeV, in

particular in the region around 100 GeV. This trend is consistent with the earlier CMS publi-
cation [8], where a similar discrepancy is observed for the pZ

T observable in the Z+b-jets final
state. A harder spectrum for the pZ

T observable is predicted in four-flavour calculations with
massive b quarks at NLO [13], which might explain the observed disagreement.

The effect of the disagreement on the estimate of the cross sections has been studied and is
included in the systematic uncertainties, as described in Section 6. Furthermore, a bin-by-bin
reweighting of the predictions according to the observed discrepancy in the pZ

T observable has
been performed, and this improves the agreement in other observables where differences are
observed.

8 Cross sections
The cross sections are estimated per b-jet multiplicity bin and for each lepton flavour separately.
The results are summarized in Table 4.
Table 4: Cross sections at the particle level for the production of a Z boson with exactly one b jet,
with at least two b jets, and with at least one b jet, and the ratio with respect to the production
of a Z boson in association with at least one jet of any flavour. The first uncertainty is statistical,
and the second systematic.

Cross section µµ ee
σZ+1b (pb) 3.52± 0.03± 0.22 3.51± 0.04± 0.23
σZ+2b (pb) 0.38± 0.02± 0.07 0.32± 0.02± 0.06
σZ+b (pb) 3.91± 0.04± 0.23 3.84± 0.04± 0.24
σZ+b/Z+j (%) 5.23± 0.04± 0.24 5.08± 0.05± 0.24

Using the best linear unbiased estimator [42], results for the µµ and ee channels are found to be
consistent with a χ2 probability of 42% for the Z+1b and 78% for the Z+2b cases. They are there-
fore combined into a single measurement using the optimal set of coefficients that minimise the
total uncertainty in the combined result, taking into account statistical and systematic uncer-
tainties and their correlations. The results are summarized in Table 5 and are then compared
with various predictions.

The expectations from MADGRAPH, in both the 5F and the 4F schemes, are estimated using a
global K factor to correct the inclusive Drell–Yan cross section for next-to-NLO effects [27]. The
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Figure 5: Distributions of kinematic observables for the Z+2b-jets selection of the combined
electron and muon samples, and a comparison with the simulated samples that are normalized
to the theoretical predictions. Top left: the dijet mass of the two b-tagged jets. Top right: the
pT distribution of the dijet pair. Left bottom: the azimuthal angle φ between the Z boson and
the dijet system. Right bottom: the pT distribution of the dilepton pair. The right-most bin
in the last three plots contains the overflow. Uncertainties in the predictions are shown as a
hatched band. The data/simulation ratio shows the separate contributions to this uncertainty:
the band represents the statistical uncertainty on the simulated yield, and the lines indicate the
uncertainties related to the jet energy scale (dashed) and the b-tagging scale factors (solid).
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expectations from aMC@NLO, at NLO, are also estimated using both 5F calculations and 4F cal-
culations with massive b quarks [13]. The events simulated with MADGRAPH and aMC@NLO

are interfaced with the PYTHIA parton shower simulation. The settings used for the predictions
from MADGRAPH and aMC@NLO are described in detail in [11].

The NLO prediction from MCFM is at the parton level. The MCFM calculations are estimated
with the CTEQ6mE PDF, and the renormalization and factorization scales are set to the invari-
ant mass of the dilepton pair.

Table 5: Cross sections for the production of a Z boson with exactly one b jet, with at least two
b jets, with at least one b jet, and the ratio with respect to at least one jet of any flavour, showing
the statistical and systematic uncertainties. The expectations from MADGRAPH, MCFM and
aMC@NLO include uncertainties due to scale variations.

Cross section Measured MADGRAPH aMC@NLO MCFM MADGRAPH aMC@NLO

(5F) (5F) (parton level) (4F) (4F)
σZ+1b (pb) 3.52± 0.02± 0.20 3.66± 0.22 3.70+0.23

−0.26 3.03+0.30
−0.36 3.11+0.47

−0.81 2.36+0.47
−0.37

σZ+2b (pb) 0.36± 0.01± 0.07 0.37± 0.07 0.29+0.04
−0.04 0.29+0.04

−0.04 0.38+0.06
−0.10 0.35+0.08

−0.06

σZ+b (pb) 3.88± 0.02± 0.22 4.03± 0.24 3.99+0.25
−0.29 3.23+0.34

−0.40 3.49+0.52
−0.91 2.71+0.52

−0.41

σZ+b/Z+j (%) 5.15± 0.03± 0.25 5.35± 0.11 5.38+0.34
−0.39 4.75+0.24

−0.27 4.63+0.69
−1.21 3.65+0.70

−0.55

Uncertainties in the theoretical predictions are estimated by varying the renormalization and
factorization scales by a factor two up and down. For the MADGRAPH 5F prediction, the scales
are varied in a correlated manner, whereas the scales are varied in an uncorrelated way for the
other predictions, which yields leads to a larger estimate for the uncertainty. The uncertainties
in the 4F predictions amount to 15–20%, as expected [43]. Uncertainties due to the choice of
PDF, jet matching scale, and mass of the b quark, have all been found to be smaller.

The measured cross sections are consistent, within uncertainties, with the expectations in the
5F scheme from both MADGRAPH and aMC@NLO. Compared to the predictions from MAD-
GRAPH and aMC@NLO in the 5F scheme, the predictions from MCFM are approximately 20%
lower. The predictions by MADGRAPH and aMC@NLO from calculations in the 4F scheme,
compared to the predictions in the 5F scheme, show a reduction of the Z+1b-jet production
rate, when the other b jet in the final state is produced outside of the acceptance.

A difference of approximately two standard deviations is observed when comparing to the
parton-level prediction from MCFM for the Z+b-jets cross section. Since the correction factor
from parton level to hadron level is smaller than one [8], this difference is not explained by
hadronization effects. The difference remains when measuring the cross section ratio, which
excludes an explanation based on experimental systematic effects that are shared between the
Z+jets and the Z+b-jets final states, such as luminosity, and the reconstruction of jets and lep-
tons. These results indicate that the difference observed with MCFM is specific to the modelling
of the Z+b-jets final state.

The largest discrepancy is observed when comparing the measured Z+1b-jet cross section with
the predictions in the 4F scheme. In particular, the prediction from aMC@NLO in the 4F scheme
shows a discrepancy of more than two standard deviations compared to the measurement.

9 Conclusions
The production of Z(``)+b-jets, with `` = µµ or ee, has been studied for events containing
leptons with p`T > 20 GeV, |η`| < 2.4, a dilepton invariant mass 76 < M`` < 106 GeV, jets with
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pj
T > 25 GeV and |η j| < 2.1, and a separation between the leptons and the jets of ∆R(`, j) > 0.5.

The Z+b-jets cross sections have been measured, at the level of stable final-state particles, for a
Z boson produced with exactly one or at least two b jets. In addition, a cross section ratio has
been extracted for a Z boson produced with at least one b jet relative to a Z boson produced
with at least one jet.

The cross section measurements are in agreement with the expectations from MADGRAPH and
aMC@NLO in the five-flavour scheme. A difference of approximately two standard deviations
is observed when comparing the cross sections with the predictions from MCFM at the parton
level, and the comparison with the cross section ratio indicates that the difference is specific
to the modelling of the Z+b-jets final state. Comparisons with the predictions in the four-
flavour scheme, in particular from aMC@NLO, show a disagreement of more than two standard
deviations in the Z+1b-jet final state.

Comparisons of the kinematic properties of Z+2b-jets production with the predictions from
MADGRAPH in the five-flavour scheme show potential limitations of the existing MC event
generators that employ the matrix element plus parton shower approach at leading order with
massless b quarks. While these observations should be confirmed with more data, next-to-
leading-order simulations and/or simulations with massive quarks could possibly provide a
better description of the data in certain regions of phase space.
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D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck,
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C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo,
L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote6,
A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesb, F.A. Diasa,7, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, C. Laganaa,
P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa



20 A The CMS Collaboration

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev2, P. Iaydjiev2, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, X. Wang,
Z. Wang, H. Xiao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang,
W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, J.P. Gomez, B. Gomez Moreno,
J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina8, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim9, Y. Assran10, S. Elgammal11, A. Ellithi Kamel12, M.A. Mahmoud13, A. Radi11,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
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Cipriano, C. Riedl, E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen, R. Schmidt18, T. Schoerner-Sadenius,
N. Sen, M. Stein, R. Walsh, C. Wissing



22 A The CMS Collaboration

University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, H. Enderle, J. Erfle, E. Garutti, U. Gebbert, M. Görner,
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Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at British University in Egypt, Cairo, Egypt
12: Also at Cairo University, Cairo, Egypt
13: Also at Fayoum University, El-Fayoum, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at National Centre for Nuclear Research, Swierk, Poland
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